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ABSTRACT  

Wavefront coding is a hybrid optical-computational technique that makes use of a phase modulating element in 

conjunction with a deconvolution algorithm to extend the depth of focus of imaging systems. The phase mask codes the 

wave-front in such a way that the point-spread function do not change appreciably as a function of defocus. In this work, 

the modulation is introduced by phase masks in the shape of a subset of Jacobi-Fourier polynomials. We will show, by 

both numerical simulations and experiments that the Jacobi-Fourier polynomial phase masks are good candidates for high-

resolution images under noise presence. 
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1. INTRODUCTION  

Wavefront coding (WFC) is a hybrid optical-computational technique that makes use of a phase modulating element in 
conjunction with a deconvolution algorithm to extend the depth of field or depth of focus (DOF) of a digital imaging 
system [1-2]. The trivial method for increasing DOF is to reduce the aperture of the instrument; in this way, the system 
presents less aberration, which results in better image quality. Nevertheless, a smaller aperture: 1) in-creases the role of 
diffraction, which limits the resolving power of optical instruments; and 2) reduces the amount of light that can be gathered 
by the system [3]. The other approach is to deconvolve the defocused images in order to deblur the out of focus regions. 
This approach has to main problems: 

a) the response to the system (PSF) is not invariant under focus shifts and is therefore not known in most of the cases 
and, 

b) deconvolution is an ill posed problem due to the loss of information for those special frequencies where the MTF is 
close or equal to zero. [4-5]. 

The technique known as WFC developed by Dowski and Cathey [1] proposes the simple placement of a phase mask (PM) 
at the exit pupil of the optical system that generates a controlled amount of third order aberrations. The aim of WFC is to 
modify the point spread function (PSF) in such a way that it becomes invariant over a range of distances around the image 
plane and MTF does not show zeroes. The coded images (intermediate images) look blurred and must be digitally filtered 
and an image close to diffraction-limited quality can be obtained [3]. 

From Dowski’s proposal many shapes deriving from the original cubic phase mask solution have been proposed among 
them we can cite root square [4], trefoil [6], sinusoidal [7], free-form [8], among others. Recently, we have proposed a 
novel shape for the phase masks based on the Jacobi-Fourier polynomials [9]. These masks shape can be expressed as 

𝑟(𝑝+1)/2𝑐𝑜𝑠(3𝜃), where 𝑟 denotes the radial coordinate, and the azimuthal dependence goes with 𝑐𝑜𝑠(3𝜃) same as trefoil mask. 
By changing the  𝑝 value we obtain different shapes. We have shown by numerical simulations that the proper choice of 

the p value is a trade-off among signal to noise ratio, desired depth of focus and presence of artifacts. In this study, we study 
the performance of the masks by numerical and experimental analysis and compare with those for trefoil one which has 
been proven to perform better than cubic masks (less artifacts) [5,6]. 

This work is organized as follows: In section 2 we describe the Jacobi-Fourier phase masks (JFPM). In section 3 we 
analyze the optical properties of WFC system. Section 4 is devoted to show, analyze and discuss the numerical and 
experimental results. Lastly, in section 5 we present the conclusions.  
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2. JACOBI-FOURIER PHASE MASK 

Jacobi polynomials, 𝐽𝑛(𝑝, 𝑞, 𝑟), are a class of classic orthogonal polynomials in the interval [0,1], where 𝑛 ≥ 0 indexes 
the set of orthogonal polynomials for given 𝑝 and 𝑞 values, and the independent variable r will represent in this work the 
radial coordinate normalized to the pupil radius. [10] 

The Jacobi polynomials are chosen as the radial function for the phase masks and, hence, Jacobi-Fourier phase masks 
(JFPM) are defined as: 

 𝑃𝑛𝑚(𝑝, 𝑞, 𝑟, 𝜃) = 𝐽𝑛(𝑝, 𝑞, 𝑟) cos(𝑚𝜃 + 𝜃0), (1) 

𝐽𝑛(𝑝, 𝑞, 𝑟) denotes the Jacobi polynomials, and 𝜃 is the azimuthal angle. 𝜃0 denotes the angle of rotated JPPM and 𝑚 ≥ 0 
the azimuthal frequency. We must stress the fact that not all combinations of m, p and q provide 2D polynomials separable 
in the 𝑥 and 𝑦 coordinates. Recently, it has been shown for cubic-like PM a smooth shape of the phase in the central part of 

the pupil and rapid variation at the periphery leads to non-zero and stable MTFs when defocusing [4]. In a recent work [9] we 
have shown that 𝑝 = 𝑞 and 𝑛 = 0 provide these feature and good coding performance can be obtained. Here, for the 
simulations and experimental demonstration we restrict ourselves to these values. For 𝑚 = 1 JFPM extent the depth of focus 

in the same way as coma [11] but this is not as effective as trefoil, 𝑚 = 3 [6, 12]. Moreover, when 𝑝 = 7 and 𝑚 = 3 the 

corresponding JFPM becomes trefoil aberration which has been shown to perform better than the pure cubic mask originally 

proposed by Dowski [1], and hence the results for the JFPM proposed here will be compared with those for trefoil one. Thus we 

will use 

 𝑃0,3(𝑝, 𝑝, 𝑟, 𝜃) = 𝐽0(𝑝, 𝑝, 𝑟) cos(3𝜃 +𝜃0), (2) 

3. OPTICAL PROPERTIES OF WFC SYSTEM WITH JFP PHASE MASK 

For the numerical and experimental analysis, we considered an optical system consisting of a lens with a focal length of         100 

mm and pupil diameter of 5 mm. The object is set at infinity illuminated with a monochromatic with a central wavelength of 632 

nm. The JFPM is placed at the lens plane. We illustrate the results with the object at infinity for simplicity, but both the numerical 

and experimental analysis are also valid for any set of conjugated planes. For the numerical simulations the object and the PSF 

were convolved to simulate the intermediate image at high sampling rate, this image was then downsampled by factor to eight, 

resulting in 6.45𝜇𝑚 pixels, to simulate the image captured by our experimental recording device. In order to analyze the 

performance of the mask in presence of noise we added random Gaussian noise to the intermediate coded images. Fourier 

transform of the intermediate image and Wiener filtering provide the final decoded images. 

The generalized pupil function Π𝑛,𝑝(𝑟, 𝜃) for the optical system can be expressed as:  

 Π𝑛,𝑝(𝑟, 𝜃) = {
exp⁡[𝑖𝑘⁡𝜙𝑛,𝑝(𝑟, 𝜃)]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑟 ≤ 1

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (3) 

where 

 𝜙𝑛,𝑝(𝑟, 𝜃) = 𝛼𝑟
𝑝−1

2 cos(3𝜃 − 𝜋
4⁄ ) +𝑊20𝑟

2, (4) 

𝛼 denotes the strength of the phase, 𝑘 = 2𝜋/𝜆 is the wave number, 𝜆 the wavelength, 𝑟 the radius of the lens which has 

been normalized to unity and 𝑊20 represents the defocus 

Figure 1 show the contour maps for 𝛼 = 100𝜆, we can observe, that the extension of the central plateau increases when 

the p value increases, and hence smaller PSFs. 

 

Figure 1. a) 2D contour maps for the phase mask, b) simulated PSF for JFPM and trefoil PM. 
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3.1 Analysis of optical properties of PM 

In this section, we will analyze the modulation transfer functions (MTFs) and phase transfer function (PTFs) in X direction 

for the defocus interval [0,6mm] and two values of the strength, 𝛼 = 7𝜆 and ⁡𝛼 = 15𝜆 (The choice of these values is 

constrained to our experimental device to mimic JFPM). 

In figure 2 we plot the optical MTFs, denoted as 𝑀𝑇𝐹(𝛼,𝑊20),  

Figure 3 show the PTFs of the system, 𝑃𝑇𝐹𝑆𝑦𝑠𝑡𝑒𝑚(𝛼,𝑊20), defined as: 

 𝑃𝑇𝐹𝑆𝑦𝑠𝑡𝑒𝑚(𝛼,𝑊20) = 𝑃𝑇𝐹(𝛼,𝑊20) − 𝑃𝑇𝐹(𝛼, 0), (5) 

The figure show that for a given 𝛼, as ⁡𝑝 increases the amplitude of the 𝑀𝑇𝐹(𝛼,𝑊20) increases. On the other hand, as 𝑝 
increases there is a loss of invariance in the defocus range. All cases, the MTFs show ripples. Nevertheless, the number 
and height of oscillations decreases as 𝑝 increases.  

 

Figure 2. 𝑀𝑇𝐹(𝛼,𝑊20) corresponding to the different PM and defocus magnitudes for α=7λ and α=15λ. 

 

Figure 3. PTFs of system for 𝛼 = 7𝜆 and 𝛼 = 15𝜆 

From figure 3, we can observe that for a given 𝑝 and defocus value, as 𝛼 increases the PTF becomes smaller. When 𝑝 = 6 

and 𝑝 = 7 show an almost linear dependence between PTFs and frequencies. Nevertheless, when 𝑝 = 8 relationship 

changes, where PTFs are steeper at small frequencies and change this behavior to become smooth functions that approach 
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asymptotically to a value. We can observe, that the value is closer to zero as 𝑝 and 𝛼 increases. Ripples can be show for 

small 𝑝 values, in other hand, when value of 𝑝 is bigger, the oscillations are smaller or null. 

4. NUMERICAL AND EXPERIMENTAL RESULTS 

In previous section we describe the optical properties of the different JFPM. In this section we will compare the simulated 

and experimental decoded images. We used a liquid crystal display (LCDs) as spatial light modulators to generate the 

phase masks in our WFC system (Holoeye®, model Pluto and a camera Hamamatsu ORCA-R2 C10600-10B). Such a 

display allows flexible implementation of different shape and strength PMs. Nevertheless, there are some limitations, for 

example, the maximum  𝛼 value of the PM is limited 15𝜆. Therefore, the values we will use for the strength of the PMs 

are 𝛼 = 7𝜆 and 𝛼 = 15𝜆. Two different amounts of random Gaussian noise are added to the simulated intermediate images 

corresponding to a CNR =11.96 (low level of noise) and CNR= 4.84 (high level noise). These values are obtained from 

the experimental intermediate images [13]. Figure 4 and figure 5 show the numerical and experimental results for 𝛼 = 7𝜆, 

CNR=11.96 and CNR=4.84 respectively. On the other hand, the results when ⁡𝛼 = 15𝜆, correspond to the figure 6 and 

figure 7 for CNR =11.96, and figure 8 for CNR= 4.84. 

 
Figure 4. Experimental and corresponding simulated results for 𝛼 = 7𝜆 and 𝐶𝑁𝑅 = 11.96. 
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Figure 5. Experimental and corresponding simulated results for 𝛼 = 7𝜆 and 𝐶𝑁𝑅 = 4.848. 

 

Figure 6. Experimental and corresponding simulated results for 𝛼 = 15𝜆 and 𝐶𝑁𝑅 = 11.96. 
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Figure 7. Experimental and corresponding simulated results for 𝛼 = 15𝜆 and 𝐶𝑁𝑅 = 11.96. (Continuation of the figure 6) 

 
Figure 8. Experimental and corresponding simulated results for 𝛼 = 15𝜆 and 𝐶𝑁𝑅 = 4.848. 
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4.1 Discussion 

Simulated results agree with experimental ones. In all figures and in agreement with Demenikov et al [14] and Mo et al [15], we 

can assume that oscillations in the MTFs and related PTF’s are the responsible of artifacts in the images. Artifacts due to 

oscillations in the high frequencies not noticeable because the MTFs are close to zero. For 𝑝 = 6 and 𝑝 = 7 show high oscillations 

in the MTFs for low frequencies whereas for higher values of 𝑝 oscillations for low frequencies become very smooth or none 

and therefore artifacts are not noticeable. Invariance in the MTF’s seems not to be important in what artifacts refer.  

From the results, can be observed that grainy images are obtained. The amount of grain for a given level of noise decreases as 𝑝 

increases. More grain implies less details in images. Therefore, the range of defocus for small 𝑝 values shrinks. The greater the 

value of 𝛼 the grainier the images. All these results agree with the fact that the area under the 𝑀𝑇𝐹(𝛼,𝑊20) increases as 𝑝 

increases and/or alfa decreases. Noise softens artifacts but they are still visible for 𝑝 = 6 and for p=7 and small defocus.  

Therefore, from our point of view and for the optical system we have considered, the JFPM with 𝑝 = 8 is the one that provides 

the best images for small level of noise and 𝛼 = 7𝜆 at expenses of shrink the defocus range; 𝑝 = 9 provides the wider defocus 

interval and 𝑝 = 10 the best images with an intermediate value of defocus range. 

For high level of noise 𝑝 = 10 provides the best results for both strength values but for 𝛼 = 7𝜆 the defocus rage is slightly longer. 

5. CONCLUSIONS 

We use Jacobi-Fourier phase masks to extend the depth of focus in an optical imaging system. The radial part we used 

Jacobi polynomials, 𝑱𝒏,𝒑⁡(𝒓) with integer indexes. For the azimuthal dependence, we used 𝒄𝒐𝒔⁡(𝟑𝜽) in order to be able to 

draw comparisons with the well-known trefoil phase mask used for wavefront coding. In order to get a smooth central 

region in the masks, we used only 𝒏 = 𝟎 Jacobi polynomials. We found that values of 𝑝 smaller than or equal to 7 yield 

decoded images with artifacts, the smaller the 𝑝 value the higher the amount of artifacts. 

For small values of 𝑝, the MTF curves have ripples which result in the presence of artifacts in the decoded images. Larger 

𝑝 value give rise to softer curves and hence fewer artifacts or none at all. The higher the 𝑝 value the higher the MTF values 

and hence the best behavior in the presence of noise. However, invariance is gradually lost as 𝑝 increases, which implies 

that as the value of 𝑝 increases, depth of focus decreases.  Results show that the Jacobi-Fourier phase masks are good 

candidates for WFC systems. 
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